skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Menyuk, C_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Brillouin instability (BI) caused by stimulated Brillouin scattering (SBS) can limit the output power of high-energy laser amplifiers. Pseudo-random bitstream (PRBS) phase modulation is an effective modulation technique to suppress BI. In this paper, we study the impact of the PRBS order and modulation frequency on the BI threshold for different Brillouin linewidths. PRBS phase modulation with a higher order will break the power into a larger number of frequency tones with a lower maximum power in each tone, leading to a higher BI threshold and a smaller tone spacing. However, the BI threshold may saturate when the tone spacing in the power spectra approaches the Brillouin linewidth. For a given Brillouin linewidth, our results allow us to determine the order of PRBS beyond which there is no further improvement in the threshold. When a specific threshold power is desired, the minimum PRBS order required decreases as the Brillouin linewidth increases. When the PRBS order is too large, the BI threshold deteriorates, and this deterioration occurs at smaller PRBS orders as the Brillouin linewidth increases. We investigate the dependence of the optimal PRBS order on the averaging time and fiber length, and we did not find a significant dependence. We also derive a simple equation that relates the BI threshold for different PRBS orders. Hence, the increase in BI threshold using an arbitrary order PRBS phase modulation may be predicted using the BI threshold from a lower PRBS order, which is computationally less time-consuming to compute. 
    more » « less
  2. The Brillouin instability (BI) due to stimulated Brillouin scattering (SBS) and the transverse (thermal) mode instability (TMI) due to stimulated thermal Rayleigh scattering (STRS) limit the achievable power in high-power lasers and amplifiers. The pump power threshold for BI increases as the core diameter increases, but the threshold for TMI may decrease as the core diameter increases. In this paper, we use a multi-time-scale approach to simultaneously model BI and TMI, which gives us the ability to find the fiber diameter with the highest power threshold. We formulate the equations to compare the thresholds of the combined and individual TMI and BI models. At the pump power threshold and below, there is a negligible difference between the full and individual models, as BI and TMI are not strong enough to interact with each other. The highest pump threshold occurs at the optimal core size of 43µm for the simple double-clad geometry that we considered. We found that both effects contribute equally to the threshold, and the full BI and TMI model yields a similar threshold as the BI or TMI model alone. However, once the reflectivity is sufficiently large, we find in the full BI and TMI model that BI may trigger TMI and reduce the TMI threshold to a value lower than is predicted in simulations with TMI alone. This result cannot be predicted by models that consider BI and TMI separately. Our approach can be extended to more complex geometries and used for their optimization. 
    more » « less
  3. We study the transverse mode instability (TMI) in the limit where a single higher-order mode (HOM) is present. We demonstrate that when the beat length between the fundamental mode and the HOM is small compared to the length scales on which the pump amplitude and the optical mode amplitudes vary, TMI is a three-wave mixing process in which the two optical modes beat with the phase-matched component of the index of refraction that is induced by the thermal grating. This limit is the usual limit in applications, and in this limit TMI is identified as a stimulated thermal Rayleigh scattering (STRS) process. We demonstrate that a phase-matched model that is based on the three-wave mixing equations can have a large computational advantage over current coupled mode methods that must use longitudinal step sizes that are small compared to the beat length. 
    more » « less